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Abstract
We find that leverage in exchange traded funds (ETFs) can affect the “crookedness” of

volatility smiles. This observation is consistent with the intuition that return shocks are
inversely correlated with volatility shocks – resulting in more expensive out-of-the-money
put options and less expensive out-of-the-money call options. We show that the prices of
options on leveraged and inverse ETFs can be used to better calibrate models of stochastic
volatility. In particular, we study a sextet of leveraged and inverse ETFs based on the S&P
500 index. We show that the Heston model (Heston , 1993) can reproduce the crooked smiles
observed in the market price of options on leveraged and inverse leveraged ETFs. We show
further that the model predicts a leverage dependent moneyness, consistent with empirical
data, at which options on positively and negatively leveraged ETFs have the same price.
Finally, by analyzing the asymptotic behavior for the implied variances at extreme strikes,
we observe an approximate symmetry between pairs of LETF smiles empirically consistent
with the predictions of the Heston model.

1 Introduction

1.1 Empirical Motivation

By relating option prices to observables (such as strike prices, time-to-expiration, spot price, etc.)
and one unknown parameter (implied volatility of the underlying asset return dynamics), Black
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and Scholes (1973) allowed practitioners to more systematically study observed option prices. Fur-
thermore, this unknown parameter allowed researchers to normalize comparisons between options
with different observables.

For all of the success of the Black-Scholes model and for its near-ubiquity today, there are
several shortcomings of the model. For example, Rubinstein (1985) pointed out strike price biases
and close-to-maturity biases by studying the prices of the most active option on the CBOE.1 In
subsequent works, Rubinstein (1994) and Jackwerth and Rubinstein (1996) showed that options
on stocks and stock options exhibit volatility skew and that foreign currency options exhibit a
volatility smile (at-the-money options are cheaper than in-the-money or out-of-the-money options).

In Figure 1, we show a typical volatility smile for call options on equities and equity indices.2

The volatilities implied by the prices of in-the-money options is higher than the volatility implied
by the prices of at-the-money options which is higher than the volatility implied by the prices of
out-of-the-money options.

Figure 1: Market observed implied volatilities (a) and prices (b) of three-month call
options on SPDR S&P 500 ETF (SPY) on October 19, 2009
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(a) Implied Volatilities
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(b) Market Prices

In this paper, we study the implied volatility surface of options on leveraged ETFs (LETFs)
and inverse leveraged ETFs (ILETFs). In particular, we consider members of a sextet of exchange
traded funds (ETFs) tracking the S&P 500 index. See Table 1 for the names, tickers and corre-
sponding leverage factor (`). The daily percentage change in the net asset value of an ETF with
leverage factor ` is ` times the daily percentage change of the underlying index.3 LETFs have

1 Other early empirical studies of implied volatilites include Latane and Rendleman (1976), Beckers (1981),
Canina and Figlewski (1993) and Derman and Kani (1994).

2 For a review, see Hull (2011).
3 For a recent discussion of the detrimental effect of daily rebalancing in LETFs and ILETFs on buy-and-hold

investors, see Dulaney et al (2012).
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Table 1: Sextet of LETFs tracking the S&P 500 index

Fund Name Ticker `
ProShares UltraPro Short S&P 500 ETF SPXU -3
ProShares UltraShort S&P 500 ETF SDS -2
ProShares Short S&P 500 ETF SH -1
SPDR S&P 500 ETF SPY 1
ProShares Ultra S&P 500 ETF SSO 2
ProShares UltraPro S&P 500 ETF UPRO 3

leverage factor ` ≥ 1 while ILETFs have leverage factor ` ≤ −1.4

According to the Black-Scholes model, an option on an LETF with leverage factor ` ≥ 1 should
have the same price as an option on an ILETF with leverage factor (−`) if both options share
the same strike price and expiration – if these ETFs share the same underlying index.5 This is
intuitive because, in risk-neutral valuation, the only difference between the evolution of the LETF
or ILETF is the leverage factor that proportionally increases the volatility. Since the option price
is dependent upon the square of the volatility, the price of options on LETFs and ILETFs with
the same strike and expiration should have the same price.

In Figure 2(a) we show the volatility smile for options on an LETF with ` = 3 and an ILETF
with ` = −3. The pattern of implied volatilities for ProShares UltraPro S&P 500 ETF (UPRO) is
similar to the pattern of implied volatilitys in Figure 1(a), with the volatilities of UPRO roughly
three times the implied volatilities from options on SPY. On the other hand, the options on the
inverse ETF (SPXU) have implied volatilities that are a decreasing function of the moneyness.
Figure 2(a) shows that the prediction of the option prices under the Black-Scholes model is not
consistent with empirical data.

4 SPY has leverage factor of one, and is actually unleveraged. In an abuse of terminology, we refer to SPY as an
LETF with leverage factor ` = 1.

5 In the current paper, we assume the spot prices of both LEFT and ILEFT are identical, and set them as $100.
For empirical data, we use the concept of moneyness, defined as the ratio of the strike price to the spot price
of the ETF (see also Lee (2004)). For consistency, we also normalize the option prices by the spot price of the
ETF.
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Figure 2: Market observed implied volatilities (a) and prices (b) of three-month call
options on ProShares UltraPro Short S&P 500 ETF (SPXU) and ProShares UltraPro

S&P 500 ETF (UPRO) for different strike prices on October 19, 2009
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(a) Implied Volatilities
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(b) Market Prices

Figure 2(b) shows the price of call options on these leveraged ETFs as a function of the
normalized strike price. These observations suggest that the crookedness of the volatility smile is
dependent on the leverage factor `.

The prices of in-the-money call options on positively leveraged ETFs (`1 ≥ 1) imply lower
volatilities than the prices of in-the-money call options on ILETFs (`2 ≤ 0) for the same level
of leverage (`1 = |`2|) and moneyness. Similarly, the prices of out-of-the-money call options on
positively leveraged ETFs imply lower volatilities than the prices of out-of-the-money call options
on ILETFs for the same level of leverage and moneyness.6

Intuitively, we expect stock returns to be negatively correlated with volatility shocks – e.g.
large price decline and an increase in volatility. As a result, far from the money put options are
more expensive than one may naively expect. As a result, the volatility implied by option market
prices are increasing with decreasing moneyness, as shown in Figure 2(a). For an inverse ETF,
stock returns would be positively correlated with volatility shocks – e.g. large price declines in
the underlying leads to large price increases in the inverse ETF. As a result, the volatility implied
by option market prices on inverse ETFs should be increasing with increasing moneyness. The
combination of these two arguments implies that low moneyness options on positively leveraged
ETFs will be more expensive than similar options on negatively leveraged ETFs.

We explore this phenomenon, as well as the crossing phenomena shown in Figure 2(b), both
empirically and theoretically in this paper.7 Although this phenomenon is intuitive, there has been

6 Both of these statements make the implicit assumption that the prices are being compared on options with the
same moneyness and maturity.

7 The strike price at which the prices of call options on LETFs and ILETFs are equal is another common feature
of the options data.
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no study of the crossing behavior depicted in Figure 2(b) and this paper seeks to fill this gap.

1.2 Observable Implications

We use the stochastic volatility model in Heston (1993) to explain the “crooked smiles” in the
options market. This Heston model, similar to the Black-Scholes model, has closed-form solutions
for the valuation of European put and call options but incorporates stochastic volatility.

Unlike the constant implied volatility in the Black-Scholes model, the dynamics of the volatility
is correlated with the dynamics of the stock price or index level in the Heston model. This
stochastic volatility model is better equipped to account for observed skewness and kurtosis of
return distributions.8

Volatility smiles have often been explained either by jump-diffusion models as suggested by
Merton (1976) or with stochastic volatility as in models proposed by Hull and White (1987) and
Heston (1993). We consider the Heston model here because of the convenient analytic properties.

Option pricing in the context of leveraged ETFs has recently gained interest in the literature.
Ahn et al (2012) and Zhang (2010) use standard transformation methods to price options on
ETFs and LETFs within the Heston stochastic volatility framework. We extended their research
by deriving the dynamics of LETFs. The closed-form solutions use a Green function approach
following the method in Lipton (2001). Our numerical simulations show that the Heston model
can explain the patterns in option prices on LETFs and ILETFs. We observe that the crooked
smile is present only when there exists non-zero correlation between the Brownian motions for the
asset returns and the variance.9 Furthermore, we show that the model predicts a moneyness –
dependent upon the level of leverage – for which the prices of positively and negatively leveraged
ETF options have the same price and that this prediction is consistent with empirical data.

We also study the asymptotic behavior of implied variance curves for options on LETF and
ILETF. This analysis relies heavily upon the moment expansion framework in Lee (2004) and
Rollin et al (2009). Subsequently analyses – (Friz et al , 2011) and (de Marco and Martini ,
2012) – refined the volatility smile expansion within the Heston model. Building upon Lee’s work,
Benaim and Friz (2009) showed how the tail asymptotics of risk-neutral returns can be directly
related to the asymptotics of the volatility smile and they applied this approach to time-changed
Lévy models and the Heston model (Benaim and Friz (2008)).

We provide empirical evidence that the asymptotic slopes of the implied variance curves for
options on LETF and ILETF show an approximate symmetry and that this approximate symmetry
is consistent with the Heston model. In particular, we show that the large-strike asymptotic slopes

8 Derman and Kani (1994) discuss the connection between the dynamics of the underlying stock price – which
determines the moments of the return distribution – and the volatility smile. The Heston model has been studied
before as an explanation for volatility smiles present in the Black-Scholes model – see, for example, Sircar and
Papanicolaou (1999).

9 When the correlation is zero, the Heston model is equivalent to the Black-Scholes model.
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of the implied variance curves for LETFs are related to the small-strike asymptotic slopes of the
implied variance curves for ILETFs. Both simulated examples and market data are presented.

The rest of the paper is organized as following. In Section 2, we review the Black-Scholes model,
and Heston stochastic volatility model. The closed-form solution of the call options of LETF and
ILETF is derived under Heston dynamics. In Section 3, the asymptotic behaviors of the option
prices are studied as the moneyness goes extremely large and small. In Section 4, we simulate the
option prices under Heston dynamics, and compare the prices across different leverage numbers `.
In addition, we calibrate our model using the empirical data in Section 5. The paper is concluded
in Section 6.

2 Leveraged and Inverse ETF Option Prices

2.1 The Black-Scholes Model

If an asset price St follows a geometric Brownian motion, then its dynamics are described by the
classic stochastic differential equation

dSt
St

= (µ− q)dt+ σdWt,

where µ, q, and σ are expected return, dividend yield and implied volatility of the asset, respec-
tively. All three parameters are assumed to be constant and continuously compounded. The price
of an LETF or ILETF Lt, which tracks ` times daily return of the underlying asset, satisfies

dLt
Lt

= (µ` − q`)dt+ σ`dWt.

where µ` = `µ and σ` = `σ. This implies that the volatilities of the returns are leveraged |`| times.
Under risk-neutral assumptions, the expected return of the LETFs µl is the risk-free rate

r, independent of l. Therefore, the option price C(t, L), satisfies the following Black-Scholes
equation:10

∂C

∂t
+

1

2
σ2`2L2∂

2C

∂L2
+ (r − q`)L

∂C

∂L
− rC = 0, (1)

where r is the constant risk-free rate.
In this model, the volatility (the standard deviation for the instantaneous ETF return dLt/Lt)

is always |`|σ, and is independent of the strike price of the option contract, as well as the sign of the
leverage number `. If both LETF and ILETF have the same leverage factor in absolute value and
the same dividend yield q`, we should observe the same implied volatility and same option price
under the Black-Scholes model. Figure 2(b) shows that this theoretical prediction is inconsistent
with observed market option prices.

10 For simplicity, we drop the subscript t for the price process Lt.
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2.2 Heston’s Stochastic Volatility Model

Since the Black-Scholes model is not able to adequately describe the phenomena observed in the
option prices on the sextet of leveraged ETFs in Section 2.1, we turn to alternative models of asset
dynamics. We choose to discuss the Heston model (Heston , 1993) in particular because of the
closed-form solutions for European option prices and the depth of literature analyzing the details
of the model.

In the risk-neutral framework, we write Lt as the price of the LETF or ILETF, vt as the
variance of the underlying stock. These variables are governed by the dynamics

dLt
Lt

= (r − q`)dt+ `
√
vtdW1t; (2)

dvt = κ(θ − vt)dt+ ε
√
vtdW2t. (3)

where W1t and W2t are two Brownian motions with a correlation value ρ, i.e.,

E [dW1tdW2t] = ρdt. (4)

A simple derivation shows the stochastic process Lt is linked to the underlying stock price
process St and the realized variance

∫ t
0
vtdt

Lt
L0

=

(
St
S0

)l
exp

(
l − l2

2

∫ t

0

vsds+ (1− l)r
)
. (5)

The equation implies that a higher realized variance implies a larger deviation between the holding
period returns of LETFs and those of the underlying stock. Though the equation cannot be directly
used in valuing options on LETFs, it shows the necessity of using stochastic volatility models since
dynamic variance is an important component of the return of LETFs.11

Utilizing the following theorem, we derive the call option value for LETFs.

Theorem 1. The value of an European call option with strike K for an LETF in the Heston model
is in the form

C(Lt, v0, τ) = Ke
Xt
2
−rτU(τ,Xt, v0), (6)

where v0 is the initial variance value at time 0 and τ is the time to maturity τ = T − t. Xt is
defined as ln Ft

K
, where Ft is the forward price of LETF and is defined as Ft = Lte

(r−q)τ . The
function U(τ,Xt, v0) is given by Equation (19) in Appendix A.

Proof. See proof in Appendix A.

11 For a constant volatility model, the realized variance is simply
∫ t

0
vdt = vt. For a more complete discussion of

this topic, see (Avellaneda and Zhang , 2010).
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Alternatively, a single set of change variables could simplify the valuation approach. If we
introduce the following change of variables12

v̂t = `2vt;

θ̂ = `2θ;

ε̂ = |`|ε; (7)

ρ̂ = Sign(`)ρ;

The stochastic differential equations in Equation (2) and Equation (3) are converted into the
following standard Heston model

dLt
Lt

= (r − q)dt+
√
v̂tdW1t; (8)

dv̂t = κ(θ̂ − v̂t)dt+ ε̂
√
v̂tdW2t. (9)

Note that the new equations are free of the leverage factor ` thus we can use the Lipton solution
or Heston solution given ` = 1. Having derived the dynamics of leveraged and inverse ETFs based
upon the dynamics of the underlying index, we move on to consider the pricing of options on
leveraged and inverse ETFs.

3 Symmetry in Implied Variances for LETF Options

In this section, we study the implications of Andersen and Piterbarg (2007) to the extreme strike
behavior of option prices on leveraged and inverse ETFs.13 Our results build heavily upon the
work by Lee (2004) wherein the author showed that the extreme strike behavior is related to the
number of finite moments of the return distribution.14

In particular, at large strikes the Black-Scholes implied variance becomes a linear function of
the logarithm of the strike price. Lee (2004) showed that the small strike asymptotic behavior is
also a linear function of the logarithm of the strike price using the properties of the inverse price
process.

Following Friz and Keller-Ressel (2009), a model is said to exhibit moment explosion at order
α > 1 if there exists some finite T ∗(α) such that E [SαT ∗ ] = ∞. The time of moment explosion,
T ∗(α) depends on the moment under consideration and is the smallest time such that E [Sαt ] <∞.

If, for some β, E
[
Sβt

]
is finite for all t, then T ∗(β) =∞.

12 This change of variables is consistent with that given by Proposition 1 in Ahn et al (2012).
13 Andersen and Piterbarg (2007) have studied the time of moment explosion within the Heston model.
14 See Leung and Sircar (2012) for a recent study of implied volatility surfaces implied by the market prices of

options on LETFs.
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Lee (2004) showed that the large strike (K � F0) Black-Scholes implied variance is related to
the degree of moment explosion through the following theorem.15

Theorem 2. If p∗ = sup
{
p | E

[
S1+p
T

]
<∞

}
and βR = lim supx→∞

σ2
BS(x)

|x|/T , then

βR = 2− 4
(√

p∗(p∗ + 1)− p∗
)
. (10)

Lee (2004) showed further that the extreme small strike (K � F0) asymptotic behavior of the
Black-Scholes implied volatility can be related to the degree of moment explosion of the inverse
price process through the following theorem.

Theorem 3. If q∗ = sup
{
q | E

[
S−qT

]
<∞

}
and βL = lim supx→∞

σ2
BS(x)

|x|/T , then

βL = 2− 4
(√

q∗(q∗ + 1)− q∗
)
. (11)

When βL or βR are zero, the underlying model does not exhibit moment explosion. Note that
p∗ = α∗+ − 1, where α∗+ is the degree of moment explosion, or the critical moment for the process
St at time T and q∗ = α∗−, where α∗− is the critical moment for the inverse price process S−1T at
time T .

Andersen and Piterbarg (2007), in their Proposition 3.1, show how to relate the degree of
moment explosion α+ to the parameters in the Heston model as well as the time of moment
explosion T ∗(α+). Following Corollary 6.2 in Andersen and Piterbarg (2007), the critical moment
α∗+ is obtained by solving T ∗(α+) = T .

To solve the critical moment α∗− for the inverse price process, Rollin (2008) showed that if an
asset follows a price process described by the Heston model, then the inverse spot price follows a
price process described by the Heston model with the following parameters

κ̃ = κ− ρε, ρ̃ = −ρ and θ̃ = κθ/κ̃ (12)

where the parameters {κ̃, θ̃} represent the analogous parameters in the inverse spot price process
to those in the non-inverted price process. Using these results, we can study the symmetry of
Black-Scholes implied variances at extreme strikes for options on LETFs and ILETFs.

Referring to the parameter translations in Equation (7), we see that the LETF price process
Lt,` is closely linked to the inverse of the ILETF price process Lt,−` Lt,` ≈ L−1t,−`. The following
table shows the corresponding parameters used for the two price processes when we combine the
results in Equation (7) with the result in Equation (12).

15 Here we use the notation x = log(K/F0) for the moneyness with respect to the stock’s forward price for contracts
expiring T years from today.
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Table 2: Comparing the parameters used in the Heston model for the LETF price
process Lt,` and the inverse of ILETF price process L−1t,−`.

Parameters Lt,` L−1t,−`
v̂t `2vt `2vt
ε̂ |`|ε |`|ε
ρ̂ Sign(`)ρ −Sign(`)ρ
κ̂ κ κ− `ρε
θ̂ `2θ `2θκ

κ−`ρε

The Heston model parameters v̂t, ε̂ and ρ̂ are the same for both processes. In practice, the
Heston model parameters κ̂ and θ̂ are not exactly the same, but they are close. Therefore, the
critical moments for the LETF price process α∗+,l approximates the critical moment for the inverse
of ILETF process α∗−,−l. The theorems above predict that βR,` ≈ βL,−`. In other words, the ratio of
the Black-Scholes implied variance to the moneyness of deep-in-the-money call options on LETFs
equals the ratio of the Black-Scholes implied variance to the moneyness of deep-out-of-the-money
call options on ILETFs of the same leveraged amplitude. The asymmetry between these two slopes
is related to the volatility of variance (ε) and increases approximately linearly with the degree of
leverage for small values of the volatility of variance. In Sections 4 and 5, we will give two examples
of critical moments and asymptotic slopes highlighting the relationships.

4 Numerical Simulations

4.1 Simulation Parameters

In this section we present numerical simulations to show the dependence of the leverage-skew
on model parameters. By studying this dependence, we can hope to endow the reader with an
understanding of the patterns predicted by the Heston model. For our numerical simulations, we
fix the following parameters

Initial volatility: v0 = (15%)2;

Risk-free interest rate: r = 2%;

Dividend yield: q = 1%;

Variance mean-reversion rate: κ = 2;

Long-term variance: θ = (15%)2;

Volatility of variance: ε = 0.1;

Time: T = 0.5;

Initial stock price: S0 = 100.
10
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In what follows, we vary the correlation ρ between returns and return variance, the leverage
number `, and the strike price K (or equivalently, the moneyness). By varying these parameters,
we analyze the model and explain the pattern implied by market prices of options on leveraged
and inverse ETFs. The model calibration on the empirical data will be discussed in Section 5.

In Figure 3, we vary the strike price of the call option and show the call option price for each
leverage number in {−3,−2,−1, 1, 2, 3} keeping the correlation fixed at ρ = −0.5. The call option
prices are seen to be split into pairs, with the prices of the doublets {−`, `} being comparable.

Figure 3: Simulated call option prices and implied volatilities with different strike price
K, different leverage number `, and correlation ρ = −0.5
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(b) Implied volatilities

The Heston model with the current set of parameters is ready to explain the volatility smile.
Hull (2011) shows that the call option prices are a monotone increasing functions of the implied
volatility. Hence, the higher the implied volatility, the higher the call option price.

4.2 Break-Even Strike Prices

Call options that are deep-in-the-money, i.e., K � S0, on the LETF with leverage number ` > 0
are more expensive than the same strike call options on the ILETF with leverage number −`. For
options that are deep-out-of-the-money (K � S0), the conclusion reverses: the option prices on
the ILETF are more expensive than that on the LETFs.16 These simulated curves are very similar
to what we have observed in Figure 3(b). Both simulated and empirical curves imply that there
exists a critical (or “break-even”) strike price (K∗(|`|)) at which the call option price of a LETF
with leverage number ` > 0 equals the call option price on a ILETF with leverage number −`.
16 Both of these statements rely on the implicit assumption that ρ < 0.
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Table 3 reports those critical strike prices that results in equality between the prices of options
on LETFs and ILETFs within the same doublet (` = ±|`|) for our numerical simulations. In
this particular set of parameters, the break-even strike price/moneyness decreases as the leverage
factor increases.

Table 3: Summary of the break-even strike prices that lead to the same option values
for leveraged ETFs within the same doublet (` = ±|`|). For these simulations, we use

ρ = −0.5

Leverage Number K∗(|`|) Option Price
` = ±1 $99.944 $4.459
` = ±2 $98.289 $9.414
` = ±3 $95.592 $14.794

Table 3 demonstrates the dependence of the break-even prices on the leverage |`|. In Figure
4, we plot the difference between call option prices on the LETF and ILETF within the same
doublet for different values of the correlation coefficient ρ. This set of graphs shows that the price
difference of the call options is symmetric with respect to ρ. The simulations further show that
the break-even strike prices, when the option price differences equal zero, are independent of ρ.

12
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Figure 4: Difference between call option prices for leveraged and inverse leveraged ETFs
within the same doublet, for different values of the correlation coefficient ρ as a function

of the strike price of the option contracts. The option contracts in this figure are
normalized so that initial stock price S0 = 100.
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Figure 4 make a few aspects of the phenomena predicted by this model clear.

• If the correlation coefficient is zero, the difference between the call option prices is zero. In
this case, the changes in the volatility are independent of the changes in the stock price.
Hence the Heston model essentially becomes a Black-Scholes model with implied volatility
being the expected mean volatility in the Heston model.

• As ` increases, the difference between the prices of options on LETF and ILETF increases in
magnitude. That can be partially explained that the higher volatility of the leverage funds,
the higher option premium.

• Upon changing the sign of ρ, the cheaper option becomes the more expensive option for fixed
strike within the same doublet of ETFs.17

17 For example, if the call option with strike K on the positively leveraged ETF with leverage number ` is more
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• The break-even strike price within each doublet is independent of ρ. Although we present
only a handful of correlation examples in Figure 4, this conclusion holds for all values of ρ.

Note that deep-out-of-the-money call options on ILETFs are more expensive than deep-out-
of-the-money call options on LETFs when ρ < 0. If the correlation coefficient ρ is negative, the
volatility and the price of ILETF tend to increase simultaneously. With the same parameters, the
price of LETF increases, while the volatility tends to decrease. Intuitively, the ILETF option has
a higher probability of ending in-the-money than the analogous LETF. As a result, the call option
prices on an ILETF with high strike are often more expensive than call option prices on an LETF
when stock price and implied volatility are negatively correlated.

4.3 Asymptotic Implied Variance Slope

We explore the correspondence present between high-strike asymptotic behavior of positively lever-
aged ETFs and low-strike asymptotic behavior of negatively leveraged ETFs in Table 4. In this
context, it is conventional to study implied variance – as opposed to implied volatility – since im-
plied variance has an asymptotically linear relationship to the logarithm of the strike price while
implied volatility has a non-linear asymototic relationship.

Table 4: Calculated extreme strike asymptotic behavior of Heston model option prices
for leveraged and inverse ETFs

α∗+ p∗ βR α∗− q∗ βL
` = −3 19.5 18.5 0.0263 42.0 42.0 0.0118
` = −2 29.1 28.1 0.0175 62.5 62.5 0.0079
` = −1 57.8 56.8 0.0087 124.2 124.2 0.0040
` = +1 123.5 122.5 0.0041 58.0 58.0 0.0085
` = +2 62.2 61.2 0.0081 29.2 29.2 0.0168
` = +3 41.72 40.7 0.0121 19.6 19.6 0.0249

Note that βR,` ≈ βL,−` and the difference between these two is roughly proportional to `.
For example, βR,3 − βL,−3 ≈ 3(βR,1 − βL,1). This correspondence can be seen graphically as an
approximate reflection about the at-the-money line (K = S0) in Figure 5. The pair of lines
corresponding to, for example, ` = 3, roughly correspond to those of ` = −3 upon reflection about
the line log(K/S0) = 0.

expensive than the call option with strike K on the negatively leveraged ETF with leverage number −` when
ρ > 0 then, if ρ is changed to −ρ, the negatively leveraged option becomes more expensive.
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Figure 5: Calculated asymptotic slope of the implied Black-Scholes variance from the
simulated Heston model
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As an example of how this reflection works in practice, we plot the Black-Scholes implied
variance as a function of the log-strike price in Figure 6 for the options priced using the Heston
model. The large strike slope of each implied variance curve is nearly parallel to the respective
asymptotic line in agreement with the asymptotic behavior of the option prices.

Figure 6: Examples of Black-Scholes implied variance curves exhibiting asymptotically
linear behavior in the limits of small and large strike prices
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Different models will have different predictions concerning the asymptotic slopes of implied
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variance curves. By studying a cross-section of option prices, one can determine the empirical
validity of a given model by simply observing these slopes and comparing the observations to the
predictions of a calibrated model. We take this approach in the following section to show the
emprical validity of the Heston model.

5 Empirical Options Data

In the previous section, we relied on simulated data to test the Heston model’s sensitivity to model
parameters. In this section, we calibrate our model to options data for all LETFs and ILETFs
listed in Table 1.

There are five parameters to calibrate: mean reversion rate κ, long-term variance θ, volatility
of variance ε, correlation ρ, and initial volatility v0. Since all the ETFs track the same underlying
index, their underlying processes are related through the leverage factor `. The five unknown
parameters to be calibrated are therefore common to all members of the sextet.

We follow the most common approach in the option pricing calibration literature and minimize
the difference between observed option prices and Heston model option prices:18

min
κ,θ,ε,ρ,v0

{∑
`,T

ωT,`

(
C

(`)
T,market − C

(`)
T,model

L
(`)
0

)2 }1/2

. (13)

with the weight function ωT,`. Since the call options values are proportional to the initial price
L`0 for each ETF, we normalize the absolute difference of the market price and the model price by
dividing by the initial LETF price. Other calibration approaches have been proposed according to
the one-to-one relationship between the option price and the implied volatility. Instead of fitting the
option prices directly, one could fit the model volatility/variance to the market volatility/variance
implied by the Black-Scholes model in the least square sense.19 For the current paper, we discuss
the optimization problem in Equation (13) with equal weight ωT,` = 1.

Using the procedure outlined above, we solved for the model parameters for over 100 trading
days between July and December 2009. The best-fit parameters varied each day, but over 90%
of the days have a volatility of variance parameter (ε) in the range [0.5, 3.5] and a correlation
parameter (ρ) in the range [−0.45,−0.75].

As an example, we again focus on the LETF option data as of October 19, 2009. The opti-
mization procedure is implemented in MATLAB using the routine lsqnonlin. Most optimization
procedures are very efficient and require less than 200 function evaluations. Since in-the-money
call options on negatively leveraged ETFs have higher prices than the same option on a positively

18 For examples of other papers that have used this calibration procedure, see Bates (1996), Bakshi et al (1997),
Carr et al (2003) and Schoutens et al (2004).

19 See Kjellin and Lövgren” (2006).
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Table 5: Heston model calibration using market prices of options on the sextet of
leveraged and inverse leveraged ETFs

κ θ ε ρ v0
6.8791 0.0669 1.3357 -0.5649 0.0359

leveraged ETFs, we expect the correlation between the asset price and variance to be negative.
Indeed, our results indicate the best fit value for the correlation is −0.565.

Since our model uses more options data (option data over a sextet of LETFs), the calibrated
parameters are more precisely determined and stable when compared to a calibration using only
options on the unleveraged member of the sextet (SPY, ` = 1).

Given the calibrated model parameters in Table 5, we can compute the asymptotic behavior
of the implied variance curves. The results of this computation are summarized in Table 6.

Table 6: Calculated extreme strike asymptotic behavior of Heston model after
calibration to market prices of options on the sextet of ETFs with the S&P 500 as the

underlying index on October 19, 2009

α∗+ p∗ βR α∗− q∗ βL
` = −3 3.510 2.510 0.1672 9.246 9.246 0.0513
` = −2 5.055 4.055 0.1101 13.348 13.348 0.0361
` = −1 9.710 8.710 0.0543 25.679 25.679 0.0191
` = +1 24.711 23.711 0.0207 9.973 9.973 0.0478
` = +2 12.862 11.862 0.0405 5.185 5.185 0.0881
` = +3 8.919 7.919 0.0594 3.597 3.597 0.1225

The difference between β
(`)
R and β

(−`)
L is more pronounced here than in Table 4 as a result of

the volatility of variance ε. This calibrated parameter ε is more than ten times larger than that
used for the numerical simulations in Section 4. We plot the implied variance curves of the market
prices as well as the asymptotic implied variance lines in Figure 7 for SPXU (` = −3) and UPRO
(` = +3).
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Figure 7: Examples of Black-Scholes implied variance curve for the market prices of
options on SPXU and UPRO (` = ±3) on October 19, 2009 and the asymptotic behavior

of these curves implied by the calibrated Heston model

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

log−Strike

Im
pl

ie
d 

V
ar

ia
nc

e

 

 

Asymptotic Lines, ℓ = −3

Asymptotic Lines ℓ = 3

Implied Variance, ℓ = −3

Implied Variance, ℓ = 3

SPXU Implied Variance

UPRO Implied Variance

The variance implied by the market prices of options on UPRO and SPXU are plotted in bold
in Figure 7. The asymptotic behavior of these empirical curves is explained by the calibrated
Heston model.

6 Conclusion

This paper was motivated by the empirical observations of robust and persistent crooked smiles
implied by the option prices on LETFs and ILETFs. In particular, we note that deep-in-the-
money call options on the LETF with leverage number ` > 0 are more expensive than call options
with the same moneyness and expiration on the ILETF with leverage number −`. Since the
Black-Scholes model cannot properly explain this phenomena, we turn to the Heston stochastic
volatility model. Since the call option price of Heston model is given explicitly, it is convenient
to analyze the Heston model than other stochastic volatility model, which in general need Monte
Carlo simulations. Following Lipton (2001) we derived the option values of LETFs and ILETFs
with the same underlying via the Green’s function approach. Here we used one important fact
that the dynamics of LETFs and ILETFs with the same underlying index have related dynamics.

We gathered pricing data for LETF options on the sextet of ETFs (` ∈ {−3,−2,−1, 1, 2, 3})
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with the S&P 500 as the underlying index. We showed that the Heston model can reproduce
the crooked smiles observed in the empirical data and, using numerical simulations, showed how
different phenomena in the options data could be produced with different model parameters.
In particular, we studied the asymptotic behavior of Black-Scholes implied volatility curves and
compared these to the predictions given by the Heston model calibrated to the market prices of
options.

An important contribution of this paper is that using options data of LETFs and ILETFs in
addition to options data on the underlying index itself can better calibrate the pricing dynamics
of the index. Using the closed-form solutions for the option prices of LETFs and ILETFs derived
in this paper, practitioners can more effectively and accurately determine the model parameters.

A Appendix

Proof of theorem 1 We follow Lipton (2001) for modeling and solving the call option prices
on leverage ETFs. Choosing the risk premium λ = λ0

√
v we find that the option price C(L, v, τ)

follows 20

Cτ −
1

2
v`2L2CLL − ερv`SCLv −

1

2
ε2vCvv − (r − q)LCL − κ̄(θ̄ − v)Cv + rC = 0, (14)

where τ = T − t is the time-to-maturity for the option, κ̄ is the new mean-reversion rate and θ̄
new is mean-reversion variance level, respectively.21 To simplify the equation above, we write the
equation in terms of the forward price (F ) and introduce Č(τ, F, v), such that

Č(τ, F, v) = erτC(τ, L, v);

F = Le(r−q)τ .

Then the new variable satisfies the

Čτ −
1

2
v`2F 2ČFF − ερv`F ČFv −

1

2
ε2vČvv − κ̄(θ̄ − v)Čv = 0, (15)

We can write this equation in terms of dimensionless variables by introducing

X = ln
F

K
= ln(

S0

K
) + (r − q)τ

⇒ U(τ,X, v) = e−X/2
Č(τ, F, v)

K
. (16)

20 Again, for simplicity, we drop the subscript t for the both Lt and vt.
21 Where κ̄θ̄ = κθ and κ̄ = κ+ λ0ε.
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Hence U(τ,X, v) satisfies

Uτ −
1

2
v`2UXX − ερv`UXv −

1

2
ε2vUvv − κ̄(θ̄ − v)Uv +

1

8
v`2U = 0. (17)

Equation (17) can be solved by introducing a Green’s function and applying the boundary condition
relevant for the option at interest through the Spectral method (Lipton , 2001). In particular, the
solution takes the form

U(τ,X, v) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

eik(X
′−X)Z(τ, k, v)U(0, X ′, v)dkdX ′. (18)

where

Z(τ, k, Y, v) = exp
{ κ̂κ̄θ̄
ε2

τ + ik`τ
ρκ̄θ̄

ε
− 2κ̄θ̄

ε2
[ζτ + ln(

−µ+ ζ + (µ+ ζ)e−2ζτ

2ζ
) + 2πiN ]

− v`2(k2 + 1/4)(1− e−2ζτ )
2(−µ+ ζ + (µ+ ζ)e−2ζτ )

}
(19)

µ(k) = −1

2
(ik`ερ+ κ̂)

ζ(k) =
1

2

√
k2`2ε2(1− ρ2) + 2ik`ερκ̂+ κ̂2 +

ε2`2

4
κ̂ = κ̄− ε`ρ/2.

The boundary condition of European call options is given by the payoff at maturity

C(τ = 0, L, v) = max(L−K, 0). (20)

In terms of dimensionless variables, this boundary condition can be written as

U(0, X, v) = max
(
eX/2 − e−X/2, 0

)
. (21)

Since eX/2 is monotically increasing and e−X/2 is monotonically decreasing, it follows that
eX/2 − e−X/2 ≥ 0 for all X ≥ 0. We change the order of integration in Equation (18) to evaluate
the X ′ integral first. This integral takes the simple form given by∫ ∞

0

eikX
′
(
eX
′/2 − e−X′/2

)
dX ′. (22)

By Evaluating the integral, we derive

U(τ,X, v) = eX/2Z(τ, i/2, v)− 1

2π

∫ ∞
−∞

e−ikX
Z(τ, k, v)

k2 + 1/4
dk

= eX/2Z(τ, i/2, v)− 1

π

∫ ∞
0

Real(e−ikXZ(τ, k, v))

k2 + 1/4
dk.
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In the last step we used the fact that Z(τ,−k, v) = Z(τ, k, v).22 The value of a European call
option in the Heston model is therefore given by Equation (16).
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